本文目录一览:
常见的网络攻击方法和防御技术
网络攻击类型
侦查攻击:
搜集网络存在的弱点,以进一步攻击网络。分为扫描攻击和网络监听。
扫描攻击:端口扫描,主机扫描,漏洞扫描。
网络监听:主要指只通过软件将使用者计算机网卡的模式置为混杂模式,从而查看通过此网络的重要明文信息。
端口扫描:
根据 TCP 协议规范,当一台计算机收到一个TCP 连接建立请求报文(TCP SYN) 的时候,做这样的处理:
1、如果请求的TCP端口是开放的,则回应一个TCP ACK 报文, 并建立TCP连接控制结构(TCB);
2、如果请求的TCP端口没有开放,则回应一个TCP RST(TCP头部中的RST标志设为1)报文,告诉发起计算机,该端口没有开放。
相应地,如果IP协议栈收到一个UDP报文,做如下处理:
1、如果该报文的目标端口开放,则把该UDP 报文送上层协议(UDP ) 处理, 不回应任何报文(上层协议根据处理结果而回应的报文例外);
2、如果该报文的目标端口没有开放,则向发起者回应一个ICMP 不可达报文,告诉发起者计算机该UDP报文的端口不可达。
利用这个原理,攻击者计算机便可以通过发送合适的报文,判断目标计算机哪些TC 或UDP端口是开放的。
过程如下:
1、发出端口号从0开始依次递增的TCP SYN或UDP报文(端口号是一个16比特的数字,这样最大为65535,数量很有限);
2、如果收到了针对这个TCP 报文的RST 报文,或针对这个UDP 报文 的 ICMP 不可达报文,则说明这个端口没有开放;
3、相反,如果收到了针对这个TCP SYN报文的ACK报文,或者没有接收到任何针对该UDP报文的ICMP报文,则说明该TCP端口是开放的,UDP端口可能开放(因为有的实现中可能不回应ICMP不可达报文,即使该UDP 端口没有开放) 。
这样继续下去,便可以很容易的判断出目标计算机开放了哪些TCP或UDP端口,然后针对端口的具体数字,进行下一步攻击,这就是所谓的端口扫描攻击。
主机扫描即利用ICMP原理搜索网络上存活的主机。
网络踩点(Footprinting)
攻击者事先汇集目标的信息,通常采用whois、Finger等工具和DNS、LDAP等协议获取目标的一些信息,如域名、IP地址、网络拓扑结构、相关的用户信息等,这往往是黑客入侵之前所做的第一步工作。
扫描攻击
扫描攻击包括地址扫描和端口扫描等,通常采用ping命令和各种端口扫描工具,可以获得目标计算机的一些有用信息,例如机器上打开了哪些端口,这样就知道开设了哪些服务,从而为进一步的入侵打下基础。
协议指纹
黑客对目标主机发出探测包,由于不同操作系统厂商的IP协议栈实现之间存在许多细微的差别(也就是说各个厂家在编写自己的TCP/IP 协议栈时,通常对特定的RFC指南做出不同的解释),因此各个操作系统都有其独特的响应方法,黑客经常能确定出目标主机所运行的操作系统。
常常被利用的一些协议栈指纹包括:TTL值、TCP窗口大小、DF 标志、TOS、IP碎片处理、 ICMP处理、TCP选项处理等。
信息流监视
这是一个在共享型局域网环境中最常采用的方法。
由于在共享介质的网络上数据包会经过每个网络节点, 网卡在一般情况下只会接受发往本机地址或本机所在广播(或多播)地址的数据包,但如果将网卡设置为混杂模式(Promiscuous),网卡就会接受所有经过的数据包。
基于这样的原理,黑客使用一个叫sniffer的嗅探器装置,可以是软件,也可以是硬件)就可以对网络的信息流进行监视,从而获得他们感兴趣的内容,例如口令以及其他秘密的信息。
访问攻击
密码攻击:密码暴力猜测,特洛伊木马程序,数据包嗅探等方式。中间人攻击:截获数据,窃听数据内容,引入新的信息到会话,会话劫持(session hijacking)利用TCP协议本身的不足,在合法的通信连接建立后攻击者可以通过阻塞或摧毁通信的一方来接管已经过认证建立起来的连接,从而假冒被接管方与对方通信。
拒绝服务攻击
伪装大量合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务响应。
要避免系统遭受DoS 攻击,从前两点来看,网络管理员要积极谨慎地维护整个系统,确保无安全隐患和漏洞;
而针对第四点第五点的恶意攻击方式则需要安装防火墙等安 全设备过滤DoS攻击,同时强烈建议网络管理员定期查看安全设备的日志,及时发现对系统存在安全威胁的行为。
常见拒绝服务攻击行为特征与防御方法
拒绝服务攻击是最常见的一类网络攻击类型。
在这一攻击原理下,它又派生了许多种不同的攻击方式。
正确了解这些不同的拒绝攻击方式,就可以为正确、系统地为自己所在企业部署完善的安全防护系统。
入侵检测的最基本手段是采用模式匹配的方法来发现入侵攻击行为。
要有效的进行反攻击,首先必须了解入侵的原理和工作机理,只有这样才能做到知己知彼,从而有效的防止入侵攻击行为的发生。

下面我们针对几种典型的拒绝服务攻击原理进行简要分析,并提出相应的对策。
死亡之Ping( Ping of death)攻击
由于在早期的阶段,路由器对包的最大大小是有限制的,许多操作系统TCP/IP栈规定ICMP包的大小限制在64KB 以内。
在对ICMP数据包的标题头进行读取之后,是根据该标题头里包含的信息来为有效载荷生成缓冲区。
当大小超过64KB的ICMP包,就会出现内存分配错误,导致TCP/IP堆栈崩溃,从而使接受方计算机宕机。
这就是这种“死亡之Ping”攻击的原理所在。
根据这一攻击原理,黑客们只需不断地通过Ping命令向攻击目标发送超过64KB的数据包,就可使目标计算机的TCP/IP堆栈崩溃,致使接受方宕机。
防御方法:
现在所有的标准TCP/IP协议都已具有对付超过64KB大小数据包的处理能力,并且大多数防火墙能够通过对数据包中的信息和时间间隔分析,自动过滤这些攻击。
Windows 98 、Windows NT 4.0(SP3之后)、Windows 2000/XP/Server 2003 、Linux 、Solaris和Mac OS等系统都已具有抵抗一般“Ping of death ”拒绝服务攻击的能力。
此外,对防火墙进行配置,阻断ICMP 以及任何未知协议数据包,都可以防止此类攻击发生。
泪滴( teardrop)攻击
对于一些大的IP数据包,往往需要对其进行拆分传送,这是为了迎合链路层的MTU(最大传输单元)的要求。
比如,一个6000 字节的IP包,在MTU为2000的链路上传输的时候,就需要分成三个IP包。
在IP 报头中有一个偏移字段和一个拆分标志(MF)。
如果MF标志设置为1,则表面这个IP包是一个大IP包的片断,其中偏移字段指出了这个片断在整个 IP包中的位置。
例如,对一个6000字节的IP包进行拆分(MTU为2000),则三个片断中偏移字段的值依次为:0,2000,4000。
这样接收端在全部接收完IP数据包后,就可以根据这些信息重新组装没正确的值,这样接收端在收后这些分拆的数据包后就不能按数据包中的偏移字段值正确重合这些拆分的数据包,但接收端会不断偿试,这样就可能致使目标计算朵操作系统因资源耗尽而崩溃。
泪滴攻击利用修改在TCP/IP 堆栈实现中信任IP碎片中的包的标题头所包含的信息来实现自己的攻击。
IP分段含有指示该分段所包含的是原包的哪一段的信息,某些操作系统(如SP4 以前的 Windows NT 4.0 )的TCP/IP 在收到含有重叠偏移的伪造分段时将崩溃,不过新的操作系统已基本上能自己抵御这种攻击了。
防御方法:
尽可能采用最新的操作系统,或者在防火墙上设置分段重组功能,由防火墙先接收到同一原包中的所有拆分数据包,然后完成重组工作,而不是直接转发。
因为防火墙上可以设置当出现重叠字段时所采取的规则。
TCP SYN 洪水(TCP SYN Flood)攻击
TCP/IP栈只能等待有限数量ACK(应答)消息,因为每台计算机用于创建TCP/IP连接的内存缓冲区都是非常有限的。
如果这一缓冲区充满了等待响应的初始信息,则该计算机就会对接下来的连接停止响应,直到缓冲区里的连接超时。
TCP SYN 洪水攻击正是利用了这一系统漏洞来实施攻击的。
攻击者利用伪造的IP地址向目标发出多个连接(SYN)请求。
目标系统在接收到请求后发送确认信息,并等待回答。
由于黑客们发送请示的IP地址是伪造的,所以确认信息也不会到达任何计算机,当然也就不会有任何计算机为此确认信息作出应答了。
而在没有接收到应答之前,目标计算机系统是不会主动放弃的,继续会在缓冲区中保持相应连接信息,一直等待。
当达到一定数量的等待连接后,缓区部内存资源耗尽,从而开始拒绝接收任何其他连接请求,当然也包括本来属于正常应用的请求,这就是黑客们的最终目的。
防御方法:
在防火墙上过滤来自同一主机的后续连接。
不过“SYN洪水攻击”还是非常令人担忧的,由于此类攻击并不寻求响应,所以无法从一个简单高容量的传输中鉴别出来。
防火墙的具体抵御TCP SYN 洪水攻击的方法在防火墙的使用手册中有详细介绍。
Land 攻击
这类攻击中的数据包源地址和目标地址是相同的,当操作系统接收到这类数据包时,不知道该如何处理,或者循环发送和接收该数据包,以此来消耗大量的系统资源,从而有可能造成系统崩溃或死机等现象。
防御方法:
这类攻击的检测方法相对来说比较容易,因为它可以直接从判断网络数据包的源地址和目标地址是否相同得出是否属于攻击行为。
反攻击的方法当然是适当地配置防火墙设备或包过滤路由器的包过滤规则。
并对这种攻击进行审计,记录事件发生的时间,源主机和目标主机的MAC地址和IP地址,从而可以有效地分析并跟踪攻击者的来源。
Smurf 攻击
这是一种由有趣的卡通人物而得名的拒绝服务攻击。
Smurf攻击利用多数路由器中具有同时向许多计算机广播请求的功能。
攻击者伪造一个合法的IP地址,然后由网络上所有的路由器广播要求向受攻击计算机地址做出回答的请求。
由于这些数据包表面上看是来自已知地址的合法请求,因此网络中的所有系统向这个地址做出回答,最终结果可导致该网络的所有主机都对此ICMP应答请求作出答复,导致网络阻塞,这也就达到了黑客们追求的目的了。
这种Smurf攻击比起前面介绍的“Ping of Death ”洪水的流量高出一至两个数量级,更容易攻击成功。
还有些新型的Smurf攻击,将源地址改为第三方的受害者(不再采用伪装的IP地址),最终导致第三方雪崩。
防御方法:
关闭外部路由器或防火墙的广播地址特性,并在防火墙上设置规则,丢弃掉ICMP协议类型数据包。
Fraggle 攻击
Fraggle 攻击只是对Smurf 攻击作了简单的修改,使用的是UDP协议应答消息,而不再是ICMP协议了(因为黑客们清楚 UDP 协议更加不易被用户全部禁止)。
同时Fraggle攻击使用了特定的端口(通常为7号端口,但也有许多使用其他端口实施 Fraggle 攻击的),攻击与Smurf 攻击基本类似,不再赘述。
防御方法:
关闭外部路由器或防火墙的广播地址特性。在防火墙上过滤掉UDP报文,或者屏蔽掉一些常被黑客们用来进Fraggle攻击的端口。
电子邮件炸弹
电子邮件炸弹是最古老的匿名攻击之一,通过设置一台计算机不断地向同一地址发送大量电子邮件来达到攻击目的,此类攻击能够耗尽邮件接受者网络的带宽资源。
防御方法:
对邮件地址进行过滤规则配置,自动删除来自同一主机的过量或重复的消息。
虚拟终端(VTY)耗尽攻击
这是一种针对网络设备的攻击,比如路由器,交换机等。
这些网络设备为了便于远程管理,一般设置了一些TELNET用户界面,即用户可以通过TELNET到该设备上,对这些设备进行管理。
一般情况下,这些设备的TELNET用户界面个数是有限制的。比如,5个或10个等。
这样,如果一个攻击者同时同一台网络设备建立了5个或10个TELNET连接。
这些设备的远程管理界面便被占尽,这样合法用户如果再对这些设备进行远程管理,则会因为TELNET连接资源被占用而失败。
ICMP洪水
正常情况下,为了对网络进行诊断,一些诊断程序,比如PING等,会发出ICMP响应请求报文(ICMP ECHO),接收计算机接收到ICMP ECHO 后,会回应一个ICMP ECHO Reply 报文。
而这个过程是需要CPU 处理的,有的情况下还可能消耗掉大量的资源。
比如处理分片的时候。这样如果攻击者向目标计算机发送大量的ICMP ECHO报文(产生ICMP洪水),则目标计算机会忙于处理这些ECHO 报文,而无法继续处理其它的网络数据报文,这也是一种拒绝服务攻击(DOS)。
WinNuke 攻击
NetBIOS 作为一种基本的网络资源访问接口,广泛的应用于文件共享,打印共享, 进程间通信( IPC),以及不同操作系统之间的数据交换。
一般情况下,NetBIOS 是运行在 LLC2 链路协议之上的,是一种基于组播的网络访问接口。
为了在TCP/IP协议栈上实现NetBIOS ,RFC规定了一系列交互标准,以及几个常用的 TCP/UDP 端口:
139:NetBIOS 会话服务的TCP 端口;
137:NetBIOS 名字服务的UDP 端口;
136:NetBIOS 数据报服务的UDP 端口。
WINDOWS操作系统的早期版本(WIN95/98/NT )的网络服务(文件共享等)都是建立在NetBIOS之上的。
因此,这些操作系统都开放了139端口(最新版本的WINDOWS 2000/XP/2003 等,为了兼容,也实现了NetBIOS over TCP/IP功能,开放了139端口)。
WinNuke 攻击就是利用了WINDOWS操作系统的一个漏洞,向这个139端口发送一些携带TCP带外(OOB)数据报文。
但这些攻击报文与正常携带OOB数据报文不同的是,其指针字段与数据的实际位置不符,即存在重合,这样WINDOWS操作系统在处理这些数据的时候,就会崩溃。
分片 IP 报文攻击
为了传送一个大的IP报文,IP协议栈需要根据链路接口的MTU对该IP报文进行分片,通过填充适当的IP头中的分片指示字段,接收计算机可以很容易的把这些IP 分片报文组装起来。
目标计算机在处理这些分片报文的时候,会把先到的分片报文缓存起来,然后一直等待后续的分片报文。
这个过程会消耗掉一部分内存,以及一些IP协议栈的数据结构。
如果攻击者给目标计算机只发送一片分片报文,而不发送所有的分片报文,这样攻击者计算机便会一直等待(直到一个内部计时器到时)。
如果攻击者发送了大量的分片报文,就会消耗掉目标计 算机的资源,而导致不能相应正常的IP报文,这也是一种DOS攻击。
T
分段攻击。利用了重装配错误,通过将各个分段重叠来使目标系统崩溃或挂起。
欢迎关注的我的头条号,私信交流,学习更多的网络技术!
黑客在进攻的过程中,需要经过哪些步骤,目的是什么?
一次成功的攻击,都可以归纳成基本的五步骤,但是根据实际情况可以随时调整。归纳起来就是“黑客攻击五部曲”
隐藏IP(防止入侵被跟踪发现)
踩点扫描(了解攻击对象,寻找漏洞)
获得系统或管理员权限(从而控制对象)
种植后门,(为了方便长期控制攻击对象)
在网络中隐身(防止入侵被发现)
网络上那些直接攻击个人电脑怎么实现的?
玩黑不好,(虽然我也玩)它使用dos攻击来实现的,我准备学习dos简称拒绝服务又叫洪水攻击它是堵塞宽带来对别人造成的攻击。这是我找的:DoS是Denial of Service的简称,即拒绝服务,造成DoS的攻击行为被称为DoS攻击,其目的是使计算机或网络无法提供正常的服务。最常见的DoS攻击有计算机网络带宽攻击和连通性攻击。带宽攻击指以极大的通信量冲击网络,使得所有可用网络资源都被消耗殆尽,最后导致合法的用户请求就无法通过。连通性攻击指用大量的连接请求冲击计算机,使得所有可用的操作系统资源都被消耗殆尽,最终计算机无法再处理合法用户的请求。如:
��* 试图FLOOD服务器,阻止合法的网络通讯
��* 破坏两个机器间的连接,阻止访问服务
��* 阻止特殊用户访问服务
��* 破坏服务器的服务或者导致服务器死机
��不过,只有那些比较阴险的攻击者才单独使用DOS攻击,破坏服务器。通常,DOS攻击会被作为一次入侵的一部分,比如,绕过入侵检测系统的时候,通常从用大量的攻击出发,导致入侵检测系统日志过多或者反应迟钝,这样,入侵者就可以在潮水般的攻击中混骗过入侵检测系统。
DoS 攻 击 (Denial of Service,简称DOS)即拒绝服务攻击,是指攻击者通过消耗受害网络的带宽,消耗受害主机的系统资源,发掘编程缺陷,提供虚假路由或DNS信息,使被攻击目标不能正常工作。实施DoS攻击的工具易得易用,而且效果明显。仅在美国,每周的DoS攻击就超过4 000次,攻击每年造成的损失达上千万美元{irl。一般的DoS攻击是指一台主机向目的主机发送攻击分组(1:1),它的威力对于带宽较宽的站点几乎没有影响;而分布式拒绝服务攻击(Distributed Denial of Service,简称DDoS)同时发动分布于全球的几千台主机对目的主机攻击(m:n ),即使对于带宽较宽的站点也会产生致命的效果。随着电子商业在电子经济中扮演越来越重要的角色,随着信息战在军事领域应用的日益广泛,持续的DoS攻击既可能使某些机构破产,也可能使我们在信息战中不战而败。可以毫不夸张地说,电子恐怖活动的时代已经来临。
DoS 攻 击 中,由于攻击者不需要接收来自受害主机或网络的回应,它的IP包的源地址就常常是伪造的。特别是对DDoS攻击,最后实施攻击的若干攻击器本身就是受害者。若在防火墙中对这些攻击器地址进行IP包过滤,则事实上造成了新的DDS攻击。为有效地打击攻击者,必须设法追踪到攻击者的真实地址和身份。方法:Synflood: 该攻击以多个随机的源主机地址向目的主机发送SYN包,而在收到目的主机的SYN ACK后并不回应,这样,目的主机就为这些源主机建立了大量的连接队列,而且由于没有收到ACK一直维护着这些队列,造成了资源的大量消耗而不能向正常请求提供服务。
Smurf:该攻击向一个子网的广播地址发一个带有特定请求(如ICMP回应请求)的包,并且将源地址伪装成想要攻击的主机地址。子网上所有主机都回应广播包请求而向被攻击主机发包,使该主机受到攻击。
Land-based:攻击者将一个包的源地址和目的地址都设置为目标主机的地址,然后将该包通过IP欺骗的方式发送给被攻击主机,这种包可以造成被攻击主机因试图与自己建立连接而陷入死循环,从而很大程度地降低了系统性能。
Ping of Death:根据TCP/IP的规范,一个包的长度最大为65536字节。尽管一个包的长度不能超过65536字节,但是一个包分成的多个片段的叠加却能做到。当一个主机收到了长度大于65536字节的包时,就是受到了Ping of Death攻击,该攻击会造成主机的宕机。
Teardrop:IP数据包在网络传递时,数据包可以分成更小的片段。攻击者可以通过发送两段(或者更多)数据包来实现TearDrop攻击。第一个包的偏移量为0,长度为N,第二个包的偏移量小于N。为了合并这些数据段,TCP/IP堆栈会分配超乎寻常的巨大资源,从而造成系统资源的缺乏甚至机器的重新启动。
PingSweep:使用ICMP Echo轮询多个主机。
Pingflood: 该攻击在短时间内向目的主机发送大量ping包,造成网络堵塞或主机资源耗尽。
电脑被黑客侵入后会出现哪些现象?
第一标志:电脑频繁随机弹出窗口。如果你电脑有这样的现象,你可能已经遭到黑客攻击了。您的系统已经遭到破坏。恶意软件可绕过浏览器的抑制随机弹出窗口anti-up的机制。
第二标志,您的浏览器突然多了一个新的工具栏,这是很常见的事情。但是应该警惕了。来路不明的新工具栏,最好还是把它删除。如果不不能轻易的删除它,你可以重新把浏览器设置到默认选项。如果你想添加新的工具栏,在安装时要阅读许可协议,并确保工具栏是合法程序。但绝大多数人都不看许可协议,恶意软件就有了可乘之机。
第三标志:安装意外的软件。安装意外的软件意味着您的计算机系统有可能遭到黑客攻击。早期的恶意软件,大多数程序是计算机病毒。但现在的多数恶意软件程序是木马,这些木马通常很像合法的程序。很多时候这些恶意软件是通过合法安装其他程序时被安装到你的电脑,阅读许可协议是非常重要的。许可协议可能已经表明,他们将会安装一个或者多个其他程序。有时您可选择不安装,有时你没有这种选择。
第四标志:您搜索的页面,跳转到其他网页。许多黑客通过重新定向,让你跳转到其他网站,而这个网站并不是你想浏览的网站。当你点击网页时,黑客即可获取利益。如果您既有假工具栏程序,又被重新定向。你应该仔细察看你的系统,删除恶意程序软件,以摆脱跳转到其他网页的状况。